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Abstract Observables on effect algebras and their fuzzy versions obtained by means of
confidence measures (Markov kernels) are studied. It is shown that, on effect algebras with
the (E)-property, given an observable and a confidence measure, there exists a fuzzy version
of the observable. Ordering of observables according to their fuzzy properties is introduced,
and some minimality conditions with respect to this ordering are found. Applications of
some results of classical theory of experiments are considered.

Keywords Effect algebra · Observable · Hilbert space effects · PV-measure ·
POV-measure · Sufficient Markov kernel · Smearing

1 Introduction

In the frame of quantum mechanics, as a proper mathematical formulation of a physical
quantity (so called observable), a normalized positive operator valued measure is consid-
ered, instead of the more traditional spectral measure (projection valued measure). This
approach has also provided a frame to investigate imprecise measurements of a physical
quantity. In the literature (e.g., [20]), the notion of a quantum mechanical fuzzy observable
has been formulated as a smearing of a sharp observable (projection measure). In the present
paper, we study smearing of observables in a more general frame of effect algebras. In anal-
ogy with [19, 20], we introduce the notion of a confidence measure (which is a Markov
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kernel), and we show that in a σ -orthocomplete effect algebra with an order determining
set of σ -additive states which has the (E)-property [11], every confidence measure yields a
smeared observable for a given (real) observable. We can then introduce a partial order for
observables by putting ξ � η if η is a smearing of ξ ; in this case we say that η is a fuzzy
version of ξ [19]. If ξ � η and simultaneously, η � ξ , we will write ξ ∼ η, and say that ξ

and η are fuzzy equivalent. In analogy with some recent papers [5], minimal elements in this
ordering are called (postprocessing) clean observables, or optimal measurements, [19].

As a motivation, we give the following [20]. Let L be σ -orthocomplete effect alge-
bra, (Ω,A) a measurable space, and ξ : A→ L a sharp observable on L, and m a σ -
additive state on L. For every E ∈ A, ξ(E) is a sharp element of L (recall that a ∈ L

is sharp if 0 is the unique common lower bound of a and its orthosupplement a′), and
m(ξ(E)) = ∫

δω(E)m(ξ(dx)), where δω(E) = 1 if ω ∈ E, and δω(E) = 0 if ω /∈ E. Since
realistic measurements always have some imprecision, one may think that the points of Ω

are to be replaced by probability distributions. If we replace the Dirac function δω by a prob-
ability distribution νω : A→ [0,1] in every point ω, we obtain

∫
Ω

νω(E)m(ξ(dω)), which
is a smearing of m(ξ(E)). Under some appropriate additional assumptions on L (which
are satisfied in the case of the effect algebra E(H) of the Hilbert space effects), there is a
smeared observable η of ξ , such that m(η(E))= ∫

Ω
νω(E)m(ξ(dω)) for every E ∈A and

every σ -additive state m.

2 Effect Algebras

An effect algebra [15] (see [16] and [22] for alternative definitions) is a set L with two
distinguished elements 0,1 and with a partial binary operation ⊕ : L×L→ L such that for
all a, b, c ∈ L we have

(EAi) if a⊕ b exists in L then b⊕ a exists in L and a⊕ b= b⊕ a (commutativity);
(EAii) if b⊕ c exists in L and a⊕ (b⊕ c) exists in L then a⊕b exists in L and (a⊕b)⊕ c

exists in L, and (a⊕ b)⊕ c= a⊕ (b⊕ c) (associativity);
(EAiii) for every a ∈ L there is a unique b ∈ L such that a⊕ b= 1 (orthosupplementation);
(EAiv) if 1⊕ a is defined, then a = 0 (zero-one law).

As usual, we shall write L= (L;⊕,0,1) for effect algebras. If the assumptions of (EAii)
are satisfied, we write a⊕ b⊕ c for the element (a⊕ b)⊕ c= a⊕ (b⊕ c) in L.

Let a, b be elements of an effect algebra L. We say that (i) a is orthogonal to b and write
a ⊥ b iff a⊕b is defined in L; (ii) a is less than or equal to b and write a ≤ b iff there exists
an element c in L such that a ⊥ c and a ⊕ c = b (in this case we also write b ≥ a); b is the
orthosupplement of a and write b= a′ iff b is the (unique) element in L such that b⊥ a and
a⊕ b= 1. If a ≤ b, then the element c such that a⊕ c= b is uniquely defined, and we write
c= b� a. In particular, for every a ∈ L, a′ = 1� a, a ⊥ b iff b ≤ a′, and (a⊕ b)′ = a′ � b.

For a finite sequence a1, a2, . . . , an, n≥ 3, we define recursively

a1 ⊕ · · · ⊕ an := (a1 ⊕ · · · ⊕ an−1)⊕ an, (1)

supposing that (a1 ⊕ · · · ⊕ an−1) and (a1 ⊕ · · · ⊕ an−1)⊕ an exist in L. Due to associativity
of ⊕, the element (1) is correctly defined. Define a1⊕ · · ·⊕ an = a1 if n= 1, and a1⊕ · · ·⊕
an = 0 if n = 0. Then, due to commutativity and associativity of ⊕, for any permutation
(i1, i2, . . . , in) of (1,2, . . . , n) and any 0≤ k ≤ n we have

a1 ⊕ · · · ⊕ an = ai1 ⊕ · · · ⊕ ain , (2)
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a1 ⊕ · · · ⊕ an = (a1 ⊕ · · · ⊕ ak)⊕ (ak+1 ⊕ · · · ⊕ an). (3)

We say that a finite sequence F = {a1, . . . , an} is orthogonal if a1 ⊕ · · · ⊕ an exists in L,
and we say that F has the ⊕-sum

⊕
F , which is defined by

⊕
F = a1 ⊕ · · · ⊕ an. (4)

An arbitrary system G= {ai}i∈I of (not necessarily different) elements of L is said to be
orthogonal if for any finite subset J of I , the system {ai}i∈J is orthogonal. An orthogonal
system G= {ai}i∈I has an ⊕-sum in L, if in L there exists the join

⊕

i∈I

ai :=
∨

J

⊕

i∈J

ai, (5)

where J runs over all finite subsets of I . In this case, we also write
⊕

G :=∨
J

⊕
i∈I ai .

Evidently, if G = {a1, . . . , an} is orthogonal, then the ⊕-sums defined by (4) and (5)
coincide.

Let G= {ai}i∈I and ai = a for all i ∈ I . The greatest n such that
⊕

i≤n ai exists, is called
the isotropic index of a. If

⊕
i≤n ai exists for all n ∈ N, we say that the isotropic index

of a is infinite. If
⊕

G exists and I is infinite, then a = 0. Indeed, let a0 =⊕
G, then

a0 = aj ⊕⊕
i∈I\{j } ai = a⊕ a0, which gives a = 0. Notice that if G is only orthogonal, then

a is not necessarily 0.
We say that an effect algebra L is σ -orthocomplete (orthocomplete) if

⊕
i∈I ai exists for

any countable (arbitrary) orthogonal system {ai : i ∈ I } of elements of L. We recall that an
effect algebra is σ -orthocomplete iff for every nondecreasing sequence {ai}i∈N there is a
supremum a =∨

i∈N
ai .

A mapping s : L→[0,1] from L to unit interval [0,1] of real numbers is a state on L if
(i) s(1)= 1, (ii) s(a⊕ b)= s(a)+ s(b) whenever a⊕ b exists in L. It is clear that s(0)= 0,
and s(a)≤ s(b) whenever a ≤ b, a, b ∈ L. A state s : L→[0,1] is said to be σ -additive, or
completely additive if the equality

s

(⊕

i∈I

ai

)

=
∑

i∈I

s(ai), (6)

holds for any countable, or arbitrary index set I , respectively, such that
⊕

i∈I ai exists in L.
A non-void system S of states on L is said to be order determining, if for a, b ∈ L,

a ≤ b iff s(a) ≤ s(b) for all s ∈ S . We denote by Conv(S) and Convσ (S) the convex and
σ -convex hull of S , respectively. Clearly, elements of Conv(S) and Convσ (S) are states on
L, and moreover, S is order determining iff Conv(S) is order determining, or, equivalently,
iff Convσ (S) is order determining.

Let L and P be effect algebras, a mapping φ : L→ P is a morphism if (i) m(1L)= 1P ,
where 1L and 1P are the unit elements in L and P , respectively, and (ii) a ⊥ b implies
φ(a) ⊥ φ(b), and φ(a ⊕ b) = φ(a)⊕ φ(b). A morphism φ is called a σ -morphism (com-
plete morphism) if it preserves all existing countable (arbitrary) ⊕-sums. A bijective mor-
phism such that a ⊥ b iff φ(a)⊥ φ(b), is an isomorphism. A σ -isomorphism, resp. complete
isomorphism, is defined in an obvious way.

A subset P of an effect algebra L is a sub-effect algebra, if (i) 0 ∈ P , 1 ∈ P ; (ii) a, b ∈ P ,
a ⊥ b implies a⊕ b ∈ P , (iii) a ∈ P implies a′ ∈ P .

We recall that an effect algebra is:
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– an orthoalgebra iff a ⊥ a implies a = 0;
– an orthomodular poset iff a ⊥ b implies a⊕ b= a ∨ b [26, 29];
– an orthomodular lattice iff it is a lattice ordered orthomodular poset;
– an MV-effect algebra iff it is lattice ordered and the equalities (a ∨ b)� a = b� (a ∧ b)

are satisfied. We recall that MV-effect algebras coincide with MV-algebras introduced by
Chang [8] as algebraic bases for many-valued logic.

Two of the most important prototypes of effect algebras are the following examples.

Example 2.1 Consider the closed interval [0,1] of reals ordered by the natural way. For two
numbers a, b ∈ [0,1] define a⊕b iff a+b ≤ 1 and put then a⊕b= a+b. Then [0,1] is an
orthocomplete effect algebra, and the effect algebra order coincides with the natural order
of reals. With respect to this order, [0,1] is a totally ordered, distributive lattice. We recall
that {at } is orthogonal iff

∑
t at ≤ 1, and

⊕
t at =∑

t at . There is only one state on [0,1],
namely the isomorphism s0(a)= a. Clearly, s0 is completely additive and the one-point set
{s0} is order determining.

We recall that [0,1] is also a prototype of MV-algebras.

Example 2.2 The set E(H) of all self-adjoint operators A on a Hilbert space H such that
0≤A≤ I , where 0 is the zero and I the identity mapping, ordered by the usual order of self-
adjoint operators, namely A≤ B iff 〈Ax,x〉 ≤ 〈Bx,x〉 for all x ∈H . We define, on E(H),
A⊥ B iff A+B ≤ I , and then put A⊕B =A+B . Then (E(H);⊕,0, I ) becomes an effect
algebra, in which the algebraic order coincides with the usual order that we started with.
A system {At }t of elements from E(H) is orthogonal if

∑
t At ≤ I , where the summation is

in the weak, or equivalently in the strong operator topology, and then
⊕

t At =∑
t At . The

system (E(H);⊕,0, I ) is an orthocomplete effect algebra which is not a lattice [17, 23].
Denote by P(H) the set of all orthogonal projections on H . Then P(H) is a sub-effect

algebra of E(H), which is a complete orthomodular lattice.
We recall that E(H), as well as P(H), play an important role in the foundations of

quantum mechanics and the theory of quantum measurements [2].

3 Observables on Effect Algebras

Let L be a σ -orthocomplete effect algebra, and (Ω,A) a measurable space. By an (Ω,A)-
observable on L we mean a mapping ξ :A→ L such that

(i) ξ(Ω)= 1;
(ii) the system {ξ(Ei)}i∈N is orthogonal and ξ(

⋃∞
i=1 Ei)=⊕∞

i=1 ξ(Ei) whenever Ei ∩Ej =
∅, i �= j , and Ei ∈A for i ≥ 1.

If (Ω,A)⊆ (R,B(R)), then an observable ξ :A→ L is said to be a real observable.
Let (Ω1,A1) be another measurable space, and let f : Ω → Ω1 be a measurable

function such that f −1(A) ∈ A whenever A ∈ A1. If ξ : A→ L is an observable, then
f ◦ ξ : A �→ ξ(f −1(A)), A ∈A1 is a (Ω1,A1)-observable on L. It is called the f -function
of ξ . In particular, if ξ is a real observable on L and f : R → R is a Borel measurable
function, then f ◦ ξ is also a real observable on L.

If ξ is a (Ω,A)-observable on L, and s is a σ -additive state on L, then sξ := s ◦ ξ :A→
[0,1] is a probability measure on (Ω,A). If ξ is a real observable, we denote by

s(ξ) :=
∫

R

tsξ (dt) (7)
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the mean value of ξ in s whenever the right-hand side of the above equation exists and is
finite.

More generally, if ξ : (X,A)→ L is an observable, then for any Borel measurable func-
tion f :X→R, f (ξ) is a real observable, and

s(f (ξ)) =
∫

R

us(f (ξ(du))

=
∫

R

us(ξ(f −1(du)))=
∫

X

f (t)sξ (dt)),

using the integral transformation theorem.
The spectrum of a real observable ξ is the smallest closed subset C of R such that

ξ(C)= 1.
For an (Ω,A)-observable ξ on L, let R(ξ) := {ξ(A) : A ∈ A} denote the range of ξ .

Recall that an element a ∈ L is called sharp if a ∧ a′ = 0, that is, 0 is the only common
lower bound of a and a′. Clearly, 0,1 are sharp, and a is sharp iff a′ is sharp. We will say
that and observable ξ is sharp if its range consists of sharp elements.

Let us consider the following examples.

Example 3.1 Let H be a Hilbert space, and E(H) be the effect algebra of Example 2.2.
Here the sharp elements coincide with projections. Indeed, if P is a projection, then P = P 2

implies P ∧ (I − P ) = P (I − P ) = 0, and conversely, for any A ∈ E(H), 0 ≤ A ≤ I

implies that A
1
2 AA

1
2 ≤ A

1
2 IA

1
2 , which yields 0 ≤ A2 ≤ A. Then 0 ≤ A − A2 ≤ A, and

(I−A)−(A−A2)= (I−A)2 ≥ 0 yields I−A≥A−A2, hence A−A2 is a common lower
bound of A and I−A. Hence, A is sharp iff A=A2, equivalently, iff A is a projection. Sharp
observables on E(H) are then exactly those whose ranges are in P(H). These observables
are called projection valued observables (PV-observables, in short), while general observ-
ables are called positive operator valued observables (POV-observables, in short). Owing
to spectral theorem, real (bounded) PV-observables are in one-to-one correspondence with
(bounded) self-adjoint operators.

Example 3.2 Let X be a nonempty set. A tribe over X is a collection of functions T ⊆
[0,1]Xsuch that the zero function 0(x)= 0 is in T and the following is satisfied:

(T1) f ∈ T �⇒ 1− f ∈ T ;
(T2) f,g ∈ T �⇒ f +̇g :=min(f + g,1) ∈ T ;
(T3) fn ∈ T , n ∈N and fn ↗ f (pointwise) �⇒ f ∈ T .

Elements of T are called fuzzy sets or fuzzy events. Sharp elements in T coincide with the
characteristic functions contained in T . We put B(T ) := {B ⊆X : χB ∈ T }, where χB is the
characteristic function of the set B . Then B(T ) is a σ -algebra of sets, which is isomorphic
with the system of all sharp elements of T . The restriction of any σ -additive state on T to
B(T ) is a probability measure. Due to Butnariu and Klement theorem [6], every element in
T is a measurable function with respect to B(T ). Moreover, every σ -additive state m on T
has an integral representation

m(f )=
∫

X

f dP, (8)

where P is the restriction of m to B(T ), i.e., P (A)=m(χA).
Let ξ be an (Ω,A)-observable on T . Define ν : X × A→ [0,1], ν(x,A) = ξ(A)(x),

where ξ(A) ∈ T . The mapping ν has the following properties:
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(c1) for any fixed x ∈X, ν(x, .) is a probability measure on A;
(c2) for any fixed A ∈A, ν(.,A) belongs to T .

Conversely, every mapping ν : X × A→ [0,1] with properties (c1), (c2) gives rise to an
observable on T given by ξ(A)= ν(.,A).

Clearly, an observable is sharp if its range consists of characteristic functions from T . In
fact, if π is a sharp (Ω,A)-observable on T , then π is a σ -homomorphism π :A→ B(T ),
therefore there is an (A,B(T ))-measurable function g :X→Ω such that π(A)= g−1(A),
A ∈A, and ν(x,A)= χg−1(A)(x) [29].

Example 3.3 Recall that an MV-algebra can be defined as a system (M, +̇,∗,0,1) consist-
ing of a nonempty set M , two constants 0 and 1, a unary operation ∗ and a binary operation
+̇ satisfying the following axioms:

(MV1) a+̇b= b+̇a;
(MV2) a+̇(b+̇c)= (a+̇b)+̇c;
(MV3) a+̇a∗ = 1;
(MV4) a+̇0= a;
(MV5) a∗∗ = a;
(MV6) 0∗ = 1;
(MV7) a+̇1= 1;
(MV8) (a∗+̇b)∗+̇b= (a+̇b∗)∗+̇a.

The above axioms are equivalent with the original axioms introduced by Chang in [8] (see
[7]). A partial order can be introduced on M by putting a ≤ b iff a∗+̇b= 1. With respect to
this ordering, M becomes a distributive lattice, where a ∨ b = (a∗+̇b)∗+̇b, a ∧ b = (a∗ ∨
b∗)∗. By putting a ⊕ b = a+̇b iff a ≤ b∗, we obtain an effect algebra (M;⊕,0,1), where
a∗ is the orthosupplement of a for all a ∈M . Conversely, an effect algebra (L;⊕,0,1) can
be organized into an MV-algebra (i.e., it is an MV-effect algebra) iff L is a lattice, and for
any a, b ∈ L, the equality (a ∨ b)� a = b� (a ∧ b) holds. The total operation +̇ is defined
by a+̇b= (a⊕ (a′ ∧ b)), and a∗ = a′ [9]. An MV-effect algebra M is σ -orthocomplete (σ -
MV algebra), or orthocomplete (complete MV algebra) iff M is a σ -lattice, or a complete
lattice, respectively. Sharp elements in an MV-algebra M coincide with the idempotents in
M , that is, a ∧ a∗ = 0 iff a+̇a = a. The set B(M) of sharp elements of M forms a Boolean
subalgebra of M . If M is σ -complete, then B(M) is a Boolean σ -algebra [13].

Every tribe is a σ -MV algebra with f +̇g =min(f + g,1), f ∗ = 1− f , and where the
lattice operations ∨,∧ coincide with pointwise supremum and infimum, respectively, of
[0,1]-valued functions on X.

By the Loomis–Sikorski theorem for σ -MV algebras [1, 12, 25], to every σ -MV algebra
there is a triple (X,T , h) consisting of a tribe T of fuzzy sets on a nonvoid set X and a
surjective σ -homomorphism (of σ -MV-algebras) h : T →M , such that the restriction of h

to B(T ) maps the latter set onto B(M).
Let M be a σ -MV-effect algebra, and let (X,T , h) be its representation by the Loomis–

Sikorski theorem. Let ξ be an (Ω,A) observable on M . For every A ∈A, there is an fA ∈ T
such that h(fA) = ξ(A), where fA is unique up to h-null sets. Define ν : X × A→ [0,1]
by putting ν(x,A) = fA(x). Clearly, for a fixed A ∈ A, νA ∈ T . Moreover, ξ(A) = h(νA).
Let {Ei}i be a disjoint sequence of elements of A, and put E = ⋃

i Ei . Then ξ(E) =⊕
i ξ(Ei). Choose functions f,fi, i = 1,2, . . . in T such that h(f )= ξ(E), h(fi)= ξ(Ei),

i = 1,2, . . . . Then we have h(f )=⊕
h(fi)= h(min(

∑∞
i=1 fi,1)). Consider an orthogonal

sequence gi, i = 1,2, . . . , where g1 = f1, and for i ≥ 1, gi = fi ∧ (g1 + · · · + gi−1)
∗. We
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have h(f1) = h(g1), and assume that h(gi) = h(fi) for i < k. Then h(gk) = h(fk ∧ (g1 +
· · · + gk−1)

∗) = h(fk) ∧ h(g1 + · · · + gk−1)
′ = h(fk) ∧ (h(f1) ⊕ · · · ⊕ h(fk−1))

′ = h(fk).
We proved, by induction, that h(fi)= h(gi), i = 1,2, . . ., which entails that h({x : fi(x) �=
gi(x)}) = 0, i = 1,2, . . . (we identify sets with their characteristic functions). Clearly,∑∞

i=1 fi > 1 iff fi �= gi for at least one i, therefore {x :∑∞
i=1 fi > 1} =⋃∞

i=1{x : fi �= gi} ∈
ker(h), and this entails that h({x : f (x) �= ∑∞

i=1 fi(x)}) = 0. This shows that ν(x,E) =∑∞
i=1 ν(x,Ei) for all x up to an h-null set.

4 Smearing of Observables

4.1 Markov Kernels

Let L be a σ -orthocomplete effect algebra with a system S of σ -additive states, and let
(X,F) and (Y,G) be measurable spaces. Let ξ be an (X,F)-observable on L. Consider a
mapping ν :X× G→[0,1] with the following properties:

(i) for any fixed x ∈X, νx(.) := ν(x, .) : G→[0,1] is a probability measure;
(ii) for any fixed G ∈ G, the mapping x �→ νG(x) := ν(x,G) is F -measurable.

That is, ν is a Markov kernel (we note that in analogy with [20], ν may be called also a
confidence measure). Let m ∈ S . The integral

∫

X

νG(x)m(ξ(dx))

converges by the dominating convergence theorem. If there is an observable η : (Y,G)→ L

such that

m(η(G))=
∫

X

νG(x)m(ξ(dx)) (9)

for every m ∈ S , the we will call η a fuzzy version of ξ , or a smearing of ξ in the states m ∈ S .
If moreover the system S is order determining, then the equations (9) uniquely determine η,
and we call η simply a fuzzy version (smearing) of ξ . In this case, we will write ξ � η. If
equation (9) holds for every m ∈ S , we will write symbolically

η(G)=
∫

X

νG(x)ξ(dx). (10)

The relation � is reflexive, since the mapping (x,G) �→ δx(G)= χG(x) is a Markov ker-
nel, and ξ(G) = ∫

χG(x)ξ(dx). It is also transitive. Indeed, let ξ � η and η � ζ , where
ξ : (X,F) → L, η : (Y,G) → L, ζ : (Z,H) → L, η(G) = ∫

X
ν1(x,G)ξ(dx), ζ(H) =∫

Y
ν2(y,H)η(dy)= ∫

Y
ν2(y,H)

∫
X

ν1(x, dy)ξ(dx). It is well known that

ν3(x,H) :=
∫

Y

ν2(y,H)ν1(x, dy) (11)

is a Markov kernel (see [19] for a detailed proof). Therefore, � is a preorder, and it can be
made a partial order in the usual way. If ξ � η, and η � ξ , we will write ξ ∼ η, and we will
say that ξ and η are fuzzy equivalent. Obviously, ξ is a minimal element with respect to � if
η � ξ implies η∼ ξ . Minimal observables are called clean in accordance with [5]. We note
that in [19], the relation � is defined in the opposite direction, and maximal elements are
called optimal measurements.
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4.2 Weak Markov Kernels

Let (Ω,A) be a measurable space. Then M+
1 (Ω,A) will denote the set of all probability

measures on (Ω,A).
The notion of a Markov kernel can be weakened as follows. Let (Ω,A) and (Ω1,A1) be

measurable spaces. Let P ⊆M+
1 (Ω,A), and let ν :Ω ×A1 → R. We will say that ν is a

weak Markov kernel with respect to P if

(i) ω �→ ν(ω,B) is A-measurable for all B ∈A1;
(ii) for every B ∈A1, 0≤ ν(ω,B)≤ 1,P-a.e.;

(iii) ν(ω,Ω1)= 1,P-a.e. and ν(ω,∅)= 0,P-a.e.
(iv) if {Bn} is a sequence in A1 such that Bn ∩Bm = ∅ for m �= n, then

ν

(

ω,
⋃

n

Bn

)

=
∑

n

ν(ω,Bn),P − a.e.

Note that a weak Markov kernel with respect to the whole M+
1 (Ω,A) is in fact a Markov

kernel.
It is easy to see that if ν is a weak Markov kernel with respect to P , then

ν(P )(B) :=
∫

Ω

ν(ω,B)P (dω),B ∈A1 (12)

is a probability measure on A1 for all probability measures P ∈ P .
Let L be a σ -orthocomplete effect algebra with an order determining system of σ -

additive states S , and let (X,F) and (Y,G) be measurable spaces. Let ξ be a (X,F)-
observable on L. If ν : X × G→ R is a weak Markov kernel with respect to P = {m ◦ ξ :
m ∈ S}, then

ν(m ◦ ξ)(B)=
∫

X

ν(ω,B)m ◦ ξ(dx)

is a probability measure on (Y,G), and if there is an observable η on L such that

ν(m ◦ ξ)(B)=m(η(B)),

for all B ∈ G and all m ∈ S , then we will also call η a fuzzy version (or a smearing) of ξ (in
the states m ∈ S , if the latter set is not order determining). If S is order determining, we also
write ξ � η.

Remark 4.1 We note that a weak Markov kernel ν : X × G→ [0,1] (with respect to one
probability measure P ) is called a random measure in the literature. If G is the Borel σ -
algebra of subsets of a complete separable metric space Y , then there exists a regular version
ν∗ of ν, such that ν∗ is a Markov kernel, and

∀G ∈ G, ν(x,G)= ν∗(x,G), a.e.P (13)

(see, e.g. [27, VI.1. 21.]). For a more general version, see Theorem 6.3.
Let L be a σ -orthocomplete effect algebra with an order determining set of σ additive

states S , ξ be an (X,F)-observable on L, and (Y,G) be a complete metric space with the
Borel σ -algebra. Let ν : X × G → [0,1] be a weak Markov kernel with respect to P =
{m ◦ ξ :m ∈ S}. Then for every m ∈ S there exists a Markov kernel ν∗m.
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If, in addition, there is a faithful state1 m0 on L, then the regular version ν∗m0
is the regular

version of ν for all m ∈ S . This will follow from Theorem 6.3.

Example 4.2 1. We can see that in Examples 3.2 and 3.3 Markov kernels are closely related
to observables. Namely, in Example 3.2 observables coincide with certain Markov kernels.

In Example 3.3, we have the following situation. Let (X,T , h) be the Loomis–Sikorski
representation of a σ -MV-algebra M . Let ξ : (Ω,A) → M be an observable. For every
A ∈A, choose fA ∈ T such that ξ(A)= h(fA) (for definiteness, we may choose the (unique)
continuous function in the corresponding class), and define ν(x,A)= fA(x), then ν : X ×
A→[0,1] is a weak Markov kernel with respect to the family P = {m ◦ h}, m a σ -additive
state on M , of probability measures on B(T ). Owing to Butnariu–Klement theorem we have

m(ξ(A))=m(h(fA))=
∫

X

fA(x)P (dx),

where P = m ◦ h/B(T ) = m ◦ (h/B(T )). The restriction h/B(T ) : B(T )→ B(M) can be
considered as a sharp observable on M , and any other observable may be considered as a
smearing of it in all σ -additive states on M .

2. Let η, ξ be real observables on an effect algebra L such that η= f ◦ ξ for some Borel
function f : R→ R. Then for every σ -additive state m on L, m(η(E))=m(ξ(f −1(E))=∫

χf−1(E)(λ)m(ξ(dλ)), E ∈ B(R). Put ν(λ,E) = χf−1(E)(λ). It is easy to see that ν is a
Markov kernel, and η is a smearing of ξ . However, if ξ is sharp, then η is sharp, too. Hence
a smearing of a sharp observable may be sharp as well.

4.3 POV-Measure with Commuting Range

In this section, we keep our standing assumption that L is a σ -orthocomplete effect algebra,
and S is an order determining set of σ -additive states on L.

Let ξ : (X,A)→ L and η : (Y,B)→ L be observables on L. Assume that η is a smearing
of ξ , hence there is a (weak) Markov kernel ν(x,E) : X × B→ [0,1] such that for every
m ∈ S, and E ∈ B,

m(η(E))=
∫

X

νE(x)m(ξ(dx)).

For E fixed, νE : X → [0,1] is a measurable function, and the right hand side of the
above equality is a mean value of the observable νE(ξ) in the state m, so that for every
σ -additive state m,

m(η(E))=m(νE(ξ)).

Define the observable Λη(E) by Λη(E){1} = η(E), Λη(E){0} = η(E)′, then we obtain, for
all m ∈ S,

m(Λη(E))=m(νE(ξ)).

1We recall that a state m0 on an effect algebra L is faithful if m0(a)= 0�⇒ a = 0. Clearly, for every state
m on L, m0(a) = 0 �⇒ m(a) = 0 (a ∈ L), whence for every observable ξ it holds m ◦ ξ � m0 ◦ ξ . For
example, if H is a complex, separable Hilbert space, then there exists a faithful state m0 on E(H).
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Theorem 4.3 Let ξ : (X,A)→ L and η : (Y,B)→ L be observables on L, such that η is a
smearing of ξ with a (weak) Markov kernel ν such that for all Borel sets E, ν(x,E) ∈ {0,1}
a.e. m ◦ ξ , m ∈ S. Then R(η)⊆R(ξ).

If η and ξ are sharp, and η is real then also the converse statement is true.

Proof Let E ∈ B. Under the hypotheses, we have for every m ∈ S,

m(η(E)) =
∫

ν(x,E)m(ξ(dx))

=
∫

{x:ν(x,E)=1}
ν(x,E)m(ξ(dx))

= m(ξ({x : ν(x,E)= 1})).
Since S is order determining, we obtain η(E)= ξ(νE)−1({1}) ∈R(ξ).

We note that in this case we have Λη(E) = νE(ξ).
Let both η and ξ be sharp, and assume that R(η) ⊆ R(ξ). Since the range of a sharp

observable is a Boolean σ -algebra [14], if η is real, we can apply [29, Theorem 1.4], to
obtain that there is a measurable function f :X→R such that

η(E)= ξ(f −1(E))

for all Borel sets E ⊆ R, and the function f is unique up to a ξ -null set. Putting ν(x,E)=
χf−1(E), we obtain

m(η(E))=m(ξ(f −1(E))=
∫

ν(x,E)m(ξ(dx))

for all states m ∈ S. Hence η is a smearing of ξ with a Markov kernel ν(x,E)= χf−1(E)(x) ∈
{0,1}. �

For different versions of the next theorem see [30, 31].

Theorem 4.4 On the effect algebra E(H) of a separable H , an observable (POV-measure)
is a smearing of a sharp observable (PV-measure) if and only if the range R(η) of η consists
of mutually commuting effects.

Moreover, a sharp real observable η is a smearing of a sharp observable ξ if and only if
R(η)⊆R(ξ), equivalently, if and only if η is a function of ξ .

Proof Let η : (Y,B) → E(H) be a POV-measure that is a smearing of a PV-measure
ξ : (X,A) → E(H). Then for every set E, and every state m, m(η(E)) = ∫

X
ν(x,E)

m(ξ(dx)) = m(νE(ξ)), which implies that η(E) = νE(ξ), where νE(ξ) is a function of ξ .
It follows that all the spectral projections of the self-adjoint operator η(E) belong to R(ξ),
and this implies that R(η) consists of mutually commuting effects.

Conversely, let the range of a POV measure η consist of commuting effects. By well
known von Neumann theorem (see also [29]), there exists a self-adjoint operator V and
Borel measurable functions fE such that η(E)= fE(V ). Then we have, for every state m,

m(η(E))=
∫

X

fE(x)m(P V (dx)),
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where P V is the spectral measure of V . Define ν(x,E) := fE(x). We will show that ν is a
weak Markov kernel.

(i) Since 0 ≤ η(E) ≤ 1, 0 ≤ fE(x) ≤ 1 on the spectrum of V , hence 0 ≤ fE ≤ 1 a.e.
m ◦ P V for all m.

(ii) fY (V )= η(Y )= 1 implies that
∫

X
ν(x,Y )m(P V (dx))= 1, and as 0≤ ν(x,Y )≤ 1, we

get ν(x,Y )= 1 a.e. m ◦ P V for all m. Similarly we show that ν(x,∅)= 0 a.e. m ◦ P V

for all m.
(iii) Let E =⋃∞

i=1 Ei , where Ei ∩Ej = ∅ whenever i �= j . From

η(E)=
∞∑

i=1

η(Ei) (14)

(the convergence in weak sense), we obtain that

∫
ν(x,E)P V (dx)=

∞∑

i=1

∫
ν(x,Ei)P

V (dx). (15)

Moreover, for every n, η(
⋃n

i=1 Ei) = ∑n

i=1 η(Ei) entails f⋃n
i=1 Ei

(V ) = ∑n

i=1 fEi
(V ) =

(
∑n

i=1 fEi
)(V ), which entails that f⋃n

i=1
(x)=∑n

i=1 fEi
(x) on the spectrum of V . From this

we derive that 0 ≤ ν(x,
⋃n

i=1 Ei) =∑n

i=1 ν(x,Ei) ≤ 1 for all n. Therefore
∑∞

i=1 ν(x,Ei)

exists, and (14) yields that

fE(V )=
∞∑

i=1

fEi
(V ),

whence fE(x)=∑∞
i=1 fEi

(x) on the spectrum of V . We conclude that ν(x,E)=∑∞
i=1 Ei

a.e. m ◦P V for every state m. This concludes the proof that ν is a weak Markov kernel, and
η is a smearing of ξ := P V .

Let both ξ and η be sharp, and let η be real. If R(η)⊆R(ξ), Theorem 4.3 implies that η

is a smearing of ξ .
Conversely, assume that η is a smearing of ξ with a (weak) Markov kernel ν. For every

state m, and every E ∈ B(R), m(η(E)) = ∫
ν(x,E)m(ξ(dx)) = m(νE(ξ)). We may also

write m(Λη(E)) = m(νE(ξ)) for every m, where Λη(E) is the 0 − 1 observable associated
with η(E), which yields Λη(E) = νE(ξ). Then η(E) = λη(E){1} = ξ(ν−1

E {1}) ∈ R(ξ). We
obtained that R(η)⊆R(ξ), equivalently, that η= f (ξ) for a measurable function f . �

4.4 Some Examples of Minimal Observables

Example 4.5 Let L be any σ -orthocomplete effect algebra, and let a1, a2, . . . , an be ele-
ments of L such that

⊕
i≤n ai = 1. Choose real numbers r1, r2, . . . , rn. Then we may con-

struct a (real) observable ξ on L by putting ξ(E)=⊕
{i:ri∈E} ai , E ∈ B(R). We clearly have

ξ({ri})= ai , i ≤ n, and {r1, r2, . . . , rn} is the spectrum of ξ .
Now let L = E(H), where H is a finite dimensional Hilbert space. Let A1,A2, . . . ,An

be effects in E(H) such that
∑

i≤n Ai = 1. That is, A1,A2, . . . ,An is a resolution of unity
in E(H). Let η be a real observable on E(H) such that η(E) =∑

{i:αi∈E}Ai , E ∈ B(R),
where αi, i ≤ n are real numbers. Clearly, η(αi)=Ai , i ≤ n, and {αi : i ≤ n} is the spectrum
of η. Notice that every POV measure η on a finite dimensional Hilbert space H is of this
type, and η({αi}), i ≤ n, are atoms of the range R(η) of the observable η.
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Since every Ai, i ≤ n is a self adjoint operator on H , it has a spectral decomposition
Ai =∑ki

j=1 aij Pij , where Pij ’s are one dimensional projections with
∑ki

j=1 Pij = 1, and 0≤
aij ≤ 1 are eigenvalues of Ai (not necessarily all different). The elements Bij := aij Pij are

effects in E(H). Owing to
∑

i≤n Ai = 1, we have
∑

i≤n

∑ki

j=1 Bij = 1. By the first paragraph,
we may choose real numbers (βij )ij and construct an observable ξ such that ξ(βij )= Bij ,
and more generally, ξ(E)=∑

{ij :βij
∈E}Bij , E ∈ B(R).

Define f : R→ R by f (βij ) = αi , i = 1, . . . , n, j = 1, . . . , ki and f (r) = 0 if r �= βij

for all ij . Since the range of f is finite, it is measurable. Moreover, f −1(αi) = {βij , j =
1,2, . . . , ki}. Therefore, η(αi) = Ai =∑ki

j=1 Bij =
∑ki

j=1 ξ(βij ) = ξ(f −1(αi)). Hence η =
f ◦ ξ , and hence η is a smearing of ξ .

We have the following conclusion: if the range of a POV observable η contains atoms
with rank greater than 1, then there is an observable ξ with ξ � η. It follows that η is not
minimal. The converse statement is also proved in [5]. Now we will rewrite it in our setting.

Assume that η is a POV measure with the spectrum {yj }j≤n such that η(yj ) for every
j ≤ n is an effect of rank one, that is, a multiple of a one-dimensional projection. Assume
that η is a smearing of a POV ξ . This entails, for every j ,

η(yj )=
∑

i

ν(xi, yj )ξ(xi)=
∑

i∈�(j)

ν(xi, yj )ξ(xi),

where i ≤ m for some m ∈ N and we put, for every j , �(j) = {i : ν(xi, yj ) �= 0}. Observe
that for every i,

∑
j ν(xi, yj )= 1, since ν(xi, .) is a probability measure.

Since η(yj ) is rank one, we have ξ(xi)= βiη(yj ) ∀i ∈ �(j), with 0 < βi ≤ 1. This yields

η(yj )=
∑

i∈�(j)

ν(xi, yj )βiη(yj ). (16)

Define α
j

i := ν(xi, yj )βi , then (16) implies
∑

i∈�(j) α
j

i = 1, α
j

i η(yj ) = ν(xi, yj )ξ(xi), and
from

∑

j

ν(xi, yj )ξ(xi)= ξ(xi)

we get, putting ν̄(yj , xi) := α
j

i , if i ∈ �(j), ν̄(yj , xi) := 0 otherwise,

ξ(xi)=
∑

j

ν̄(yj , xi)η(yj ), (17)

which shows that ξ is a smearing of η. This shows that ξ � η implies η∼ ξ , i.e. η is minimal.

Example 4.6 Let L be a σ -orthocomplete effect algebra, (Ω,A) a measurable space. Let
O(Ω,A,L) denote the set of all observables on L with the value space (Ω,A). Let O ⊆
O(Ω,A,L). We say that an observable ξ is minimal in O (or O-clean), if for any η ∈ O,
the condition η � ξ implies that η∼ ξ .

Recall that any element a in an effect algebra L defines an observable ξa with the out-
come space Ω = {0,1} by

ξa({1})= a, ξa({0})= a′.

Observables of this type are called 1-0-observables.
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In [19], minimality in the class O({0,1},H) of the 1-0 observables on the effect algebra
E(H) is considered. In accordance with [19], the 1-0 observable corresponding to A ∈ E(H)

will be denoted by EA. We recall that the set O({0,1},H) is convex, and

λEA + (1− λ)EB =EλA+(1−λ)B

whenever λ ∈ [0,1].

Proposition 4.7 [19] Let A,B ∈ E(H) and let EA,EB be the corresponding 1-0 observ-
ables. Then EB �EA if and only if there are numbers s, t ∈ [0,1] such that A= tB + sB ′.

As a consequence of Proposition 4.7 we obtain that EA ∼EB iff A= B or A= B ′.

Proposition 4.8 [19, Proposition 3] Let A ∈ E(H). The observable EA is minimal in
O({0,1},H) if and only if ‖A‖ = ‖A′‖ = 1.

We note that the extreme elements in the convex set E(H) are projection operators
[10, Lemma 2.3]. According to Proposition 4.8, for every projection P , the corresponding
1-0 observable EP is minimal in O({0,1},H), but there are also other minimal observables.
However, in accordance with Example 4.5, if dimH ≥ 3, then the observable EA for any
effect A is not minimal in the set of all real observables on E(H).

5 Smearings of Observables on Effect Algebras with the (E)-Property

Notice that if S is an order determining system of states on an effect algebra L, then by
replacing S by its (σ )-convex hull Conv(S), we may always assume that S is a (σ )-convex
set.

Let L be a σ -orthocomplete effect algebra with an order determining system S of σ -
additive states, (X,F) be a measurable space. Every observable ξ : F → L can be charac-
terized by a mapping Φξ : S→M+

1 (X,F) defined by

Φξ(m)(F )=m ◦ ξ(F ), m ∈ S,F ∈ F . (18)

Here F →m ◦ ξ(F )=Φξ(m)(F ), F ∈F is the probability distribution of the observable ξ

in the state m.
We will try to find conditions under which to given observable and Markov kernel there

exists a fuzzy version. For the sake of simplicity, we will concentrate to real observables.
The following definitions were introduced in [11]. Let S �= ∅ be a convex set. A mapping

f : S × B(R)→[0,1] such that

(i) given m ∈ S, f (m, .) is a probability measure on B(R),
(ii) for any E ∈ B(R), f (λm1 + (1− λ)m2,E)= λf (m1,E)+ (1− λ)f (m2,E) whenever

λ ∈ [0,1] and m1,m2 ∈ S

is said to be a σ -effect function on S.

Definition 5.1 Let L be an effect algebra. We say that a convex system S of states on L has
the (E)-property (E as for existence) if, given a σ -effect function f on S, for any E ∈ B(R)

there exists an element ξ(E) ∈ L such that
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(E) f (m,E)=m(ξ(E)),m ∈ S.

It was shown in [11] that the set of all σ -additive states on the effect algebra E(H) has
the (E)-property.

Theorem 5.2 Let L be a σ -orthocomplete effect algebra and let S be a convex order de-
termining system of σ -additive states on L which has the (E)-property. Then for every effect
function f on S, the mapping E �→ ξ(E) from B(R)→ L is an observable on L. Moreover,
m �→ f (m, .)=Φξ(m).

Proof Since S is order determining, the element ξ(E) is uniquely defined by property (E).
Moreover, ξ(R) = 1. Let (Ei)

∞
i=1 ⊆ B(R) be such that Ei ∩ Ej = ∅ whenever i �= j . Then

for any i �= j ,

1 ≥ s(ξ(Ei ∪Ej))= f (m,Ei ∪Ej)

= f (m,Ei)+ f (m,Ej )=m(ξ(Ei))+m(ξ(Ej )),

which implies that ξ(Ei)⊥ ξ(Ej ) and ξ(Ei ∪Ej)= ξ(Ei)⊕ ξ(Ej ). By induction we prove
that ξ(

⋃n

i=1 Ei)=⊕n

i=1 ξ(Ei). Put E :=⋃∞
i=1 Ei . Then for every m ∈ S,

m(ξ(E)) = f

(

m,

∞⋃

i=1

Ei

)

=
∞∑

i=1

f (m,Ei)

= lim
n→∞

n∑

i=1

f (m,Ei)= lim
n→∞

n∑

i=1

m(ξ(Ei))

= lim
n→∞m

(
n⊕

i=1

ξ(Ei)

)

=m

( ∞⊕

i=1

ξ(Ei)

)

,

where the last equality holds owing to σ -additivity of m. Since S is order determining, we
obtain ξ(E)=⊕∞

i=1 ξ(Ei). �

Theorem 5.3 Let S be a convex order determining system of σ -additive states on a σ -
orthocomplete effect algebra L such that S has (E) property. Then, given a real observable
ξ on L, and a Markov kernel ν :R× B(R)→[0,1] there is a fuzzy version η of ξ .

Proof Let ξ and ν be given. For every m ∈ S and E ∈ B(R), define

f (m,E) :=
∫

R

νE(x)m(ξ(dx)). (19)

We will prove that f : S × B(R)→ [0,1] is an effect function. (i): Let m ∈ S be fixed,
and let (Ei)

∞
i=1 be a sequence of disjoint sets from B(R). Put E =⋃∞

i=1 Ei . Then νE(x) :=
ν(x,E)=∑∞

i=1 νEi
(x), and by additivity of the integral, for every n ∈N,

∫

R

ν

(

x,

n⋃

i=1

Ei

)

m(ξ(dx))=
n∑

i=1

∫

R

ν(x,Ei)m(ξ(dx)).
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Since ν⋃n
i=1 Ei

↗ νE pointwise, we have

lim
n→∞

∫

R

ν

(

x,

n⋃

i=1

Ei

)

m(ξ(dx))=
∫

R

νE(x)m(ξ(dx)),

hence f (m,E)=∑∞
i=1 f (m,Ei).

(ii): Let m= αm1+ (1−α)m2, then for every E ∈ B(R), m(ξ(E))= αm1(ξ(E))+ (1−
α)m2(ξ(E)). Therefore

f (m,E) =
∫

R

νE(x)m(ξ(dx))

=
∫

R

νE(x)(αm1(ξ(dx))+ (1− α)m2(ξ(dx)))

= α

∫

R

νE(x)m1(ξ(dx))+ (1− α)

∫

R

νE(x)m2(ξ(dx))

= αf (m1,E)+ (1− α)f (m2,E).

This proves that f is an effect function. Then the (E) property entails that there is an
observable η such that for every m ∈ S, E ∈ R, m(η(E))= ∫

R
ν(x,E)m(ξ(dx)), that is, η

is a fuzzy version of ξ . �

6 Stochastic Operators and Markov Kernels

At the beginning, we introduce some notations. Let M(Ω,A) denote the vector space of
all complex measures on (Ω,A). Then M(Ω,A) is a Banach space with the total variation
norm ‖μ‖ = |μ|(Ω).

Let μ be a σ -finite measure on (Ω,A), we denote by L(μ) the subspace in M(Ω,A)

generated by all P ∈M+
1 (Ω,A) such that P � μ. The space L(μ) can be identified with

L1(Ω,A,μ), by extension of the map P �→ dP
dμ

. If P ⊂M+
1 (Ω,A), then we denote by L(P)

the subspace generated by
⋃

P∈P L(P ).
A stochastic operator is an affine map

T :M→M+
1 (Ω1,A1).

where M is a convex subset in M+
1 (Ω,A). Any stochastic operator can be extended to a

positive, norm-preserving map from the Banach subspace in M(Ω,A) generated by M, to
M(Ω1,A1).

Example 6.1

1. Let A1 ⊂A be a sub-σ -algebra. Then the restriction map

TA1 :M+
1 (Ω,A)→M+

1 (Ω,A1),P �→ P/A1

is a stochastic operator.
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2. Let F : (Ω,A)→ (Ω1,A1) be a measurable map. Then F defines the stochastic operator

T F :M+
1 (Ω,A)→M+

1 (Ω1,A1),P �→ P F ,

where P F is the distribution of F under P , that is,

P F (B)= P (F−1(B)),B ∈A1.

3. Let ν :Ω ×A1 → R be a weak Markov kernel with respect to P . Then Tν : P �→ ν(P )

defines a stochastic operator Tν : L(P)→M(ω1,A1).

A stochastic operator is called a statistical map if there is a Markov kernel such that T =
Tν . Note that operators TA1 and TF in Example 6.1 are given by Markov kernels. Indeed, if
we put

νA1(ω,B)= χB(ω), νF (ω,B)= χF−1(B)(ω), (20)

then TA1 = TνA1
, and TF = TνF

.

Proposition 6.2 [3, 4] A stochastic operator T :M+
1 (Ω,A)→M+

1 (Ω1,A1) is a statistical
map if and only if for every B ∈A1 there is an A-measurable function fB :Ω →[0,1] such
that

∫

B

(T P )(dω1)=
∫

Ω

fB(ω)P (dω) (21)

for every P ∈M+
1 (Ω,A).

Proof If there is a Markov kernel ν such that T = Tν , we put fB(ω)= ν(ω,B).
Conversely, ν(ω,B) := fB(ω) is a Markov kernel. Indeed, for every ω∗ ∈ Ω let

δω∗ denote the corresponding Dirac measure. Equation (21) implies that T δω∗(B) =∫
Ω

fB(ω)δω∗(dω)= fB(ω∗), which immediately implies the desired result. �

Let ξ : (X,F)→ L and η : (Y,G)→ L be observables such that ξ � η, and let ν : X ×
G→[0,1] be the corresponding confidence measure. Then the equation

m(η(G))=
∫

X

ν(x,G)m(ξ(dx)), G ∈ G, m ∈ S (22)

can be rewritten in the form

Φη = Tν ◦Φξ , (23)

where Tν is the statistical map corresponding to ν, and Φξ is defined by (18).
In general, there is a little hope for a stochastic operator T :M(Ω,A)→M(Ω1,A1)

to be given by a Markov kernel (see e.g. [4]). However, for stochastic operators defined on
L(μ) it is often the case.

Let us recall that the measurable space (X,B) is a standard Borel space if X is a complete
separable metrizable (Polish) space and B is the Borel σ -algebra over X.

Theorem 6.3 [28]. Let μ be a σ -finite measure on (Ω,A) and (X,B) be a standard Borel
space. Let T : L(μ)→M(X,B) be a stochastic operator. Then there is a Markov kernel
ν :Ω × B→[0,1] such that T = Tν/L(μ).



Int J Theor Phys (2008) 47: 125–148 141

Let ξ be an (Ω,A)-observable on L, and let m0 be a faithful σ -additive state on L. Then
for every m ∈ S , we have m ◦ ξ �m0 ◦ ξ . By Theorem 6.3, to every stochastic operator

T : L(m0 ◦ ξ)→M(X,B),

where (X,B) is a standard Borel space, there is a Markov kernel ν :Ω × B → [0,1] such
that T = Tν/L(m0 ◦ ξ).

6.1 Coarse Graining

We keep our assumption that L is a σ -complete effect algebra and S is an order determining
system of σ -additive states on L.

Definition 6.4 Let ξ and η be observables on L with value spaces (X,F) and (Y,G),
respectively. We say that η is a coarse graining of ξ if there is a stochastic operator
T :M+

1 (X,F)→M+
1 (Y,G) such that Φη = T ◦Φξ , where Φξ is defined by (18).

Our previous discussion shows that if ξ � η, then η is a coarse-graining of ξ . If η is a
coarse graining of ξ , and conditions of Theorem 6.3 are satisfied, then ξ � η holds.

In particular, if L = E(H) (H separable), then for any observable ξ : (Ω,A)→ L and
any faithful state m0, every stochastic operator T : L(m0ξ )→M(X,B) (where (X,B) is a
standard Borel space) defines a Markov kernel ν, and hence a fuzzy version η of ξ with the
confidence measure ν. If (X,B)= (R,B(R)), then η is a real observable.

7 Application of the Classical Theory of Experiments to Quantum Observables

Representations of observables by probability distributions enable us to apply some results
from the classical theory of experiments to quantum observables.

A (statistical) experiment (or model) is a triple X = (Ω,A,P), where (Ω,A) is a mea-
surable space and P is a nonempty family of measures in M+

1 (Ω,A). (Ω,A) is called the
sample space of the experiment X.

7.1 f-Divergence

Let P,Q ∈M+
1 (Ω,A). Recall that a Lebesgue decomposition of P with respect to Q is any

pair (f,N), such that f :Ω →R is measurable, f ≥ 0, N ∈A, Q(N)= 0, and

P (A)=
∫

A

f dQ+ P (A∩N),A ∈A.

The function f is called the likelihood ratio of P with respect to Q and denoted by
f = dP/dQ. For example, if P �Q and (dP/dQ,N) is a Lebesgue decomposition, then
P (N)= 0 and dP/dQ is the Radon–Nikodym derivative. If both P and Q are dominated
by a σ -finite measure μ and p = dP/dμ, q = dQ/dμ, N = {q = 0}, then (p/q,N) is a
Lebesgue decomposition of P w.r. Q.

Let P,Q ∈ M+
1 (Ω,A) and let (dP/dQ,N) be a Lebesgue decomposition. Let f :

[0,∞) → R be a convex function. We define the f -divergence of P with respect to Q

by [21]

Df (P,Q)=
∫

Ω

f

(
dP

dQ

)

dQ+ P (N)f∞, (24)
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where f∞ = limx→∞ f (x)

x
. It can be seen that Df does not depend on the choice of the

Lebesgue decomposition.
The f -divergence of P with respect to Q is a generalization of the total variation of

P −Q. Choosing f (u) := |u− 1| for all u ∈ R
+ we obtain Df (P,Q)= ‖P −Q‖. More

generally, if f is a strictly convex function, satisfying f (1)= 0, then Df (P,Q)≥ 0 for all
P , Q and Df (P,Q) = 0 if and only if P =Q. In this sense, Df can be seen as a quasi-
distance in M+

1 (Ω,A).
For example, if f (x) = − log(x), then Df (P,Q) is the well-known I -divergence

(Kullback–Leibler divergence, relative entropy)

I (P,Q)=
∫

Ω

(logq − logp)qdμ,

here μ is a dominating measure and p = dP/dμ, q = dQ/dμ.
Another example is the Hellinger distance

H(P,Q)= 1

2

∫

Ω

(p1/2 − q1/2)2dμ

obtained by the choice f (x) = fH (x) = (1 − x1/2). For more examples and facts about
f -divergences, see [24].

Let ξ � η. The relation (9) implies that if for two states m1,m2 we have m1 ◦ ξ =m2 ◦ ξ ,
then also m1 ◦ η =m2 ◦ η holds. That is, the discerning power of ξ with respect to states is
greater than that of η. A strengthening of this result is given by the following monotonicity
theorem. In [21, 28], it is proved for Markov kernels, but the proof works also for weak
Markov kernels.

Theorem 7.1 Let P,Q ∈M+
1 (Ω,A) and let ν :Ω ×A1 →[0,1] be a weak Markov kernel

with respect to {P,Q}. Let f : [0,∞)→R be a convex function. Then

Df (P,Q)≥Df (ν(P ), ν(Q)).

7.2 Sufficient Markov Kernels

Let (Ω,A,P) be an experiment, (Ω1,A1) a measurable space and ν :Ω ×A1 → [0,1] a
Markov kernel. According to (12), ν assigns to every P ∈ P a measure ν(P ) ∈M+

1 (Ω1,A1)

by

ν(P )(A1)=
∫

Ω

ν(x,A1)P (dx).

Note that for P,Q ∈M+
1 (Ω,A), Q� P implies ν(Q)� ν(P ). Indeed, if B ∈A1 is such

that ν(P )(B) = ∫
ν(ω,B)dP (ω) = 0, then, since ν(ω,B) ≥ 0, we must have ν(ω,B) =

0, P a.e. But then also
∫

ν(ω,B)Q(dω)= ν(Q)(B)= 0.
For a measurable function f : (Ω,A)→ [0,1] and P ∈M+

1 (Ω,A), we define the mea-
sure f · P as

f · P (A) :=
∫

A

f dP.

Then clearly f · P � P , hence ν(f · P )� ν(P ). Let us define

Eν
P (f ) := dν(f · P )/dν(P ).
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Definition 7.2 [21, Definition 22.1] Let (Ω,A,P) be an experiment, (Ω1,A1) a measurable
space and ν :Ω ×A1 →[0,1] a Markov kernel.

(a) ν is called Blackwell sufficient (for P) if there exists a kernel ν ′ :Ω1 ×A→[0,1] such
that ν ′(ν(P ))= P holds for all P ∈ P .

(b) ν is said to be sufficient (for P) if to every A ∈ A there exists a measurable function
gA : (Ω1,A1)→R, such that

Eν
P (χA)= gA, ν(P ) a.e. for all P ∈ P. (25)

Clearly, for the observables ξ, η on L, such that ξ � η, we have ξ ∼ η iff the correspond-
ing Markov kernel ν is Blackwell sufficient for the measures m ◦ ξ , m ∈ S .

Remark 7.3 In classical statistics, sufficiency of a sub-σ -algebra A1 (or a statistic) for an ex-
periment means the existence of common versions of the conditional probabilities P (A/A1)

for all P ∈ P . The above definition is a generalization of this well-known notion: if A1 ⊂A
is a sub-σ -algebra and ν = νA1 , then Eν

P (χA)= P (A/A1).

Remark 7.4 Let us fix P ∈M+
1 (Ω,A). Let us define a map ν ′P :Ω1 ×A→R by

ν ′P (ω1,A) :=Eν
P (χA)(ω1).

Then we have
∫

A

ν(ω,B)P (dω)=
∫

B

ν ′P (ω1,A)ν(P )(dω1), A ∈A,B ∈A1. (26)

We prove that ν ′P is a weak Markov kernel with respect to ν(P ).
By definition, we know that ω1 �→ ν ′P (ω1,A) is measurable for all A ∈ A. This shows

(i). Moreover, ν ′P (ω1,A)≥ 0, ν(P ) a.e. Moreover, let B = {ω1 : ν ′P (ω1,A) > 1} and suppose
that ν(P )(B) > 0. Then by (26),

ν(P )(B) <

∫

B

ν ′P (ω1,A)ν(P )(dω1)=
∫

A

ν(ω,B)P (dω)≤ ν(P )(B).

It follows that ν(P )(B)= 0, whence ν ′P (ω1,A)≤ 1, ν(P ) a.e., and (ii) is shown. We have

1 = P (Ω)=
∫

Ω

ν(ω,Ω1)P (dω)=
∫

Ω1

ν ′P (ω1,Ω)ν(P )(dω1)

⇒ ν ′P (ω1,Ω)= 1 a.e. ν(P ).

Similarly we show that ν ′P (ω1,∅) = 0 a.e. ν(P ) which proves (iii). Finally, let {An} be a
sequence in A, such that An ∩Am = ∅ if n �=m. Then for B ∈A1,

∫

B

ν ′P (ω1,
⋃

n

An)ν(P )(dω1) =
∫

⋃
n An

ν(ω,B)P (dω)=
∑

n

∫

An

ν(ω,B)P (dω)

=
∫

B

∑

n

ν ′P (ω1,An)ν(P )(dω1)
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which proves (iv), so that ν ′P is indeed a weak Markov kernel with respect to ν(P ). By (26)

ν ′P (ν(P )(A))=
∫

Ω1

ν ′P (ω1,A)ν(P )(dω1)=
∫

A

ν(ω,Ω1)P (dω)= P (A).

We see that sufficiency of the kernel ν, in contrast with Blackwell sufficiency, implies
the existence of a weak Markov kernel ν ′, such that ν ′(ν(P ))= P holds for P ∈ P .

7.3 Pairwise Sufficiency

We say that a subalgebra (Markov kernel) is pairwise sufficient for P , if it is sufficient for
any pair {P1,P2},P1,P2 ∈ P . Clearly, a sufficient subalgebra (Markov kernel) is pairwise
sufficient. We have the following characterization of pairwise sufficient Markov kernels.

Theorem 7.5 [21, 24] (S. Kullback, R.A. Leibler, T. Csiszár). Let (Ω,A), (Ω1,A1) be
measurable spaces, ν :Ω ×A1 →[0,1] a Markov kernel and P,Q ∈M+

1 (Ω,A). Then the
following are equivalent.

(i) ν is sufficient for {P,Q}.
(ii) For any convex function f on R

+ one has

Df (ν(P ), ν(Q))=Df (P,Q). (27)

(iii) There is a strictly convex function f on R
+ such that

Df (ν(P ), ν(Q))=Df (P,Q) <∞. (28)

Note that we may take the Hellinger distance H(P,Q) in (iii).

7.4 Dominated Families

Let P ⊂M+
1 (Ω,A). We say that P is a dominated family, if there is a σ -finite measure μ

such that P � μ. If this is the case, then we can find a finite measure μ0, dominating P . It
is clear that if P� μ, then we have C(P)� μ, where

C(P)=
{∑

n

λnPn : λn ≥ 0,
∑

n

λn = 1,Pn ∈ P
}

.

If we also have μ(A)= 0 whenever P (A)= 0 for all P ∈ P , then we write P ∼ μ.

Lemma 7.6 [18] Let P be a dominated family. Then there is a convex combination P0 =∑
n λnPn of elements of Pn ∈ P , n ∈N, such that P ∼ P0.

The following theorem is well known.

Theorem 7.7 [18, 28] Let P ⊂M+
1 (Ω,A) be a dominated family and let P0 ∈ C(P) be

such that P ∼ P0. Let A1 ⊂A be a sub-σ -algebra. Then the following are equivalent.

(i) A1 is sufficient for P .
(ii) A1 is pairwise sufficient for P .

(iii) A1 is sufficient for the pair {P,P0} for every P ∈ P .
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A similar statement holds also for Markov kernels. Since the proof is not easy to find
in the literature, we give it here. We will first show that we can describe sufficient Markov
kernels in terms of sufficient subalgebras.

Let ν :Ω ×A1 → [0,1] be a weak Markov kernel with respect to P ⊂M+
1 (Ω,A). For

P ∈ L(P) ∩M+
1 (Ω,A) we define a probability measure P × ν ∈M+

1 (Ω ×Ω1,A⊗A1),
by

P × ν(A×B)=
∫

A

ν(ω,B)P (dω), A ∈A, B ∈A1. (29)

Note that we have P × ν(Ω ×B)= ν(B) and P × ν(A×Ω1)= P (A) for A ∈A, B ∈A1.

Lemma 7.8 [21] Let P ⊂ M+
1 (Ω,A) and let ν : Ω × A1 → [0,1] be a Markov kernel.

Then ν is sufficient for P if and only if the sub-σ -algebra A0 = {∅,Ω} ⊗A1 ⊂A⊗A1 is
sufficient for {P × ν : P ∈ P}.

Proof Let ν be sufficient and let ν ′ be the corresponding weak Markov kernel, see Remark
7.4. For A ∈A,B ∈A1, we define a function fA×B :Ω ×Ω1 →[0,1] by

fA×B(ω,ω1)= ν ′(ω1,A)χB(ω1).

It is clear that fA×B is A0-measurable, moreover, for B1 ∈A1 and P ∈ P ,

∫

Ω×B1

fA×Bd(P × ν) =
∫

B∩B1

ν ′(ω1,A)ν(P )(dω1)=
∫

A

ν(ω,B ∩B1)P (dω)

= P × ν(A×B ∩Ω ×B1).

It follows that fA×B is the common version of the conditional probability fA×B = P ×
ν(A×B/A0), P × ν a.e., for all P ∈ P .

Conversely, suppose that A0 is sufficient for {P × ν : P ∈ P} and let fA×B = P × ν(A×
B/A0), P × ν a.e. for all P ∈ P . Then, since fA×B is A0-measurable, it depends only from
ω1. Put ν ′(ω1,A)= fA×Ω1(ω1), then for B ∈A1 and P ∈ P ,

∫

B

ν ′(ω1,A)ν(P )(dω1)=
∫

Ω×B

fA×Ω1d(P × ν)= P × ν(A×B)=
∫

A

ν(ω,B)P (dω),

so that ν ′ = ν ′P , ν(P )-a.e. �

Theorem 7.9 Let P ⊂M+
1 (Ω,A) be dominated and let P0 ∈ C(P) be such that P ∼ P0.

Let ν :Ω ×A1 → [0,1] be a Markov kernel. Then ν is sufficient for P if and only if ν is
sufficient for {P,P0} for every P ∈ P .

Proof Let us denote

P × ν := {P × ν : P ∈ P}.
By Lemma 7.8, ν is sufficient for all {P,P0} if and only if the sub-σ -algebra A0 is sufficient
for all {P × ν,P0 × ν}. Clearly, P0 × ν ∈ C(P × ν) and if we have P × ν ∼ P0 × ν, then,
by Theorem 7.7, A0 is sufficient for P × ν and therefore ν is sufficient for P . It is enough
to prove that {P × ν : P ∈ P} is dominated by P0 × ν.
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For this, fix ε > 0 and let A ∈A, B ∈A1. By Kolmogorov inequality,

P0 × ν(A×B)=
∫

A

ν(ω,B)P0(dω)≥ kP0(A∩ {ν(ω,B)≥ k}) (30)

for all k ≥ 0, moreover, since ν(ω,B)≤ 1,

P × ν(A×B) =
∫

A

ν(ω,B)P (dω)=
∫

A∩{ν(ωB)≥k}
ν(ω,B)P (dω)

+
∫

A∩{ν(ω,B)<k}
ν(ω,B)P (dω)≤ P (A∩ {ν(ω,B)≥ k})+ k.

Since P � P0, there is some δ > 0, such that P (A) < ε/2 if P0(A) < 2δ/ε. Put k = ε/2
in (30), then P0× ν(A×B) < δ implies that P0 ∩ {ν(ω,B)≥ ε/2}) < 2δ/ε and P × ν(A×
B) < ε.

Let now C ∈A⊗A1 be such that P0 × ν(C) < δ/2. Then, since C can be approximated
by rectangles, there are some A ∈A and B ∈A1, such that A×B ⊃ C and P0×ν(A×B) <

δ. This implies that P (C)≤ P × ν(A×B) < ε. �

A comparison of Blackwell sufficiency and sufficiency is given in the following theorem
([21, Theorem 22.11]).

Theorem 7.10 Let (Ω,A,P) be an experiment, (Ω1,A1) a measurable space and ν :Ω ×
A1 →[0,1] a Markov kernel.

(i) If (Ω,A,P) is μ-dominated by a σ -finite measure μ on (Ω,A) and ν is Blackwell
sufficient, then ν is sufficient.

(ii) If (Ω1,A1, ν(P)) is μ1-dominated by a σ -finite measure μ1, (Ω,A) is a standard Borel
space and ν is sufficient for P , then ν is also Blackwell sufficient.

Proof (i) can be proved from Theorems 7.1, 7.5 and 7.9, (ii) follows from Remark 7.4 and
Theorem 6.3. �

We can list the results of the present section as follows.

Corollary 7.11 Let P ⊂M+
1 (Ω,A1) be a dominated family and let P0 ∈ C(P) be such that

P ∼ P0. Let ν :Ω ×A1 →[0,1] be a Markov kernel. Then the following are equivalent.

(i) ν is pairwise sufficient for P .
(ii) ν is sufficient for {P,P0} for each P ∈ P .

(iii) For all P ∈ P and all convex functions f : [0,∞)→R, we have

Df (P,P0)=Df (ν(P ), ν(P0)).

(iv) There is a strictly convex function f : [0,∞)→R, such that for all P ∈ P

Df (P,P0)=Df (ν(P ), ν(P0)) <∞.

(v) ν is sufficient for P .
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(vi) There is a weak Markov kernel ν ′ :Ω1 ×A1 → [0,1] with respect to {ν(P ) : P ∈ P},
such that ν ′(ν(P ))= P for all P ∈ P . If (Ω,A) is a standard Borel space, then ν ′ is a
Markov kernel and ν is Blackwell sufficient for P .

Proof The equivalence of (i)–(v) follows directly from our previous results, (v)�⇒(vi)
follows from the Remark 7.4. The implication (vi)�⇒(v) follows from Theorems 7.1
and 7.5. �

7.5 Application to Fuzzy Quantum Observables

Recall that if m0 is a faithful state on L then, for every state m and every observable ξ

on L, it holds m ◦ ξ �m0 ◦ ξ . Therefore P = {m ◦ ξ :m ∈ S} is a dominated family, with
P ∼m0 ◦ ξ . Applying Corollary 7.11 and Theorem 7.10, we obtain the following theorem.

Theorem 7.12 Let L be a σ -orthocomplete effect algebra with an order determining system
S of σ -additive states, ξ and η be real observables on L such that ξ � η with a confidence
measure ν, and let there exist a faithful state m0 ∈ S . The following conditions are equiva-
lent.

(i) ν is pairwise sufficient for {m ◦ ξ :m ∈ S}.
(ii) ν is sufficient for {m ◦ ξ,m0 ◦ ξ} for all m ∈ S .

(iii) for all m ∈ S and all convex functions f : [0,∞)→R, we have

Df (m ◦ ξ,m0 ◦ ξ)=Df (ν(m ◦ ξ), ν(m0 ◦ ξ)).

(iv) There is a strictly convex function f : [0,∞)→R such that for all m ∈ S

Df (m ◦ ξ,m0 ◦ ξ)=Df (ν(m ◦ ξ), ν(m0 ◦ ξ)) <∞.

(v) ν is sufficient for {m ◦ ξ :m ∈ S}.
(vi) ν is Blackwell sufficient for {m ◦ ξ :m ∈ S}.
(vii) ξ ∼ η.
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